Estratto

Estratto da un prodotto in vendita su **ShopWKI**, il negozio online di Wolters Kluwer Italia

Vai alla scheda \rightarrow

Wolters Kluwer opera nel mercato dell'editoria professionale, del software, della formazione e dei servizi con i marchi: IPSOA, CEDAM, Altalex, UTET Giuridica, il fisco.

CAPITOLO 1 IL FENOMENO DELL'ESPLOSIONE NELL'INDUSTRIA

Sommario: 1.1 Le esplosioni nel luogo di lavoro – 1.2 Le esplosioni delle polveri combustibili – 1.3 Le esplosioni di gas, vapori e nebbie infiammabili – 1.4 Asfissia e prevenzione dell'ATEX – 1.5 Case History – 1.6 L'incidente di Flixborough e il nuovo approccio alla sicurezza nell'industria di processo – 1.7 Conclusioni

ABSTRACT: Nel Capitolo vengono descritte le principali statistiche connesse al fenomeno dell'esplosione accidentale nell'industria. Sono altresì riportati alcuni gravi ed emblematici incidenti accaduti nel recente passato, per contestualizzare l'importanza della valutazione del rischio di esplosione e l'individuazione delle misure di prevenzione e protezione.

«Il giorno 14 di Dicembre 1785, circa alle sei di sera, dal Signor Giacomelli, Mastro Panettiere di questa città, vicino alla chiesa dello Spirito Santo, si verificò un'esplosione che abbatté i telai e i vetri della sua bottega che davano sulla strada: il rumore fu forte come quello di un grosso petardo e si fece sentire ad una distanza considerevole. Al momento dell'esplosione fu vista nella bottega una fiammata molto viva che durò soltanto pochi secondi. Si riconobbe subito che la fiammata era partita dal retrobottega, dove si trovava il garzone che rimescolava della farina alla luce di una lampada. Il garzone ne ebbe il viso e le braccia scottate, i suoi capelli furono bruciati e gli ci vollero più di 15 giorni per guarire dalle bruciature. Egli non fu l'unica vittima di questo evento.»

Conte Carlo Ludovico Morozzo di Bianzé
Perito incaricato dalla Reale Accademia delle Scienze di Torino¹

Nella maggioranza dei siti manifatturieri la presenza di sostanze infiammabili e/o polveri combustibili è dovuta a precise ragioni tecniche legate ad esigenze produttive. I cicli industriali, infatti, oltre al prodotto finito, ottenuto a partire da materie prime o intermedie, generano anche sostanze di rifiuto in forma liquida, gassosa o solida pulverulenta. In tutta l'articolazione del ciclo di fabbricazione è quindi possibile la creazione di miscele infiammabili che necessitano di procedure specifiche e impianti di trattamento dedicati. Tali problematiche risultano presenti in molte filiere di produzione, sia con rischi di tipo convenzionale sia con possibilità di incidente rilevante.

L'esistenza di sostanze pericolose in un processo industriale viene associata almeno a tre scenari di incidente con effetti sulla sicurezza dei lavoratori:

- incendio:
- esplosione;
- rilasci tossici.

¹ Morozzo di Bianzè, Carlo Ludovico, Relazione su una Violenta Detonazione, Politecnico di Torino Editore, Torino, 1996.

La prevalenza di un incidente rispetto ad un altro è funzione sia del tipo di ciclo produttivo realizzato sia della quantità di sostanze coinvolte nel possibile scenario. Per esempio, l'industria chimica di processo può risultare soggetta a tutte e tre le tipologie di incidente secondo le modalità indicate in Tabella 1.1.

Tabella 1.1 - Tre tipi di incidente nell'industria chimica

TIPO DI INCIDENTE	PROBABILITÀ TIPICA DI ACCADIMENTO	Danno connesso alla sicurezza dei lavoratori	POTENZIALE DI PERDITA ECONOMICA
Incendio	Alta	Basso	Medio
Esplosione	Media	Medio	Alto
Rilascio tossico	Bassa	Alto	Basso

Fonte: Crowl et al., 2002

Si rileva altresì che, nella maggioranza delle aziende "non chimiche" a rischio convenzionale (es. metalmeccanica, legno, alimentare), la possibilità di un rilascio tossico risulta limitata².

1.1 LE ESPLOSIONI NEL LUOGO DI LAVORO

La maggioranza delle esplosioni che hanno luogo nelle filiere industriali del territorio nazionale risultano raramente estese a parti rilevanti di stabilimento, pur con eccezioni significative. Tuttavia, vista la frequente presenza di personale dipendente operante a ridosso del fronte di fiamma eventualmente generato, gli effetti del fenomeno non sono per questo meno significativi. Lesioni gravissime si possono generare, oltre che da esplosioni che rilascino grandi quantità di energia, anche da Flash Fire originati da semplici operazioni di travaso di liquidi infiammabili o polveri combustibili³.

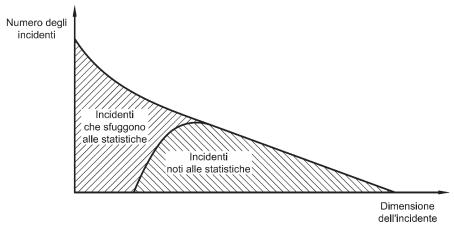
I casi di esplosione più severi determinano, oltre a danni alle persone, anche perdite economiche particolarmente importanti causate da lesioni e/o cedimenti strutturali di impianti, attrezzature e luoghi di lavoro. Tali danni sono provocati dalle sovrappressioni generate dall'esplosione, dal passaggio del fronte di fiamma oppure dalla proiezione di frammenti. Descrizioni approfondite di esplosioni avvenute negli ultimi 30 anni in Occidente (Italia, Europa, Stati Uniti) sono presenti nei seguenti database di libero accesso:

- database INFOR.MO dell'INAIL nel quale è presente una raccolta qualitativa dei casi di infortunio contenuti nell'archivio del sistema di sorveglianza degli infortuni mortali, tra i quali è selezionabile come causa prima l'esplosione (https://appsricercascientifica.inail.it/getinf/informo/home_informo.asp, ultima consultazione il 3/6/2017);
- database ARIA (Analysis, Research and Information on Accidents) del Ministero

² È tuttavia possibile che incendi di vaste dimensioni che coinvolgano, in particolare, materiali plastici, possano causare rilevanti impatti interni ed esterni (anche psicologici).

Per esempio, si consulti la relazione tecnica elaborata dall'ARPA, realizzata in conseguenza ad un incendio di vaste dimensioni che ha coinvolto una grande azienda di elettrodomestici: http://www.arpa.veneto.it/arpav/chie-arpav/file-e-allegati/rischio-industriale/Relazione tecnica DeLonghi 24-04-2007.pdf.

³ A questo proposito si rileva che l'art. 294-bis, D.Lgs. n. 81/2008 prevede che una formazione particolare venga erogata agli operatori addetti a tali tipologie di attività.


dell'Ambiente Francese nel quale sono raccolti report dettagliati di eventi incidentali avvenuti in Francia ed Europa in aziende a rischio di incidente rilevante (https://www.aria.developpement-durable.gouv.fr/?lang=en, ultima consultazione il 3/6/2017);

- database MARS (Major Accidents Reporting System) che annota gli incidenti avvenuti in ambito europeo in aziende a rischio di incidente rilevante (https://emars. *jrc.ec.europa.eu/*, *ultima consultazione il 3/6/2017*);
- rapporti completi di indagine sviluppati dall'U.S. Chemical Safety and Hazard Investigation Board (http://www.csb.gov/, ultima consultazione il 3/6/2017).

Descrizioni e statistiche di incidente sono inoltre reperibili presso i database MHI-DAS dell'HSE britannico e FACTS realizzato dal TNO olandese diffusamente utilizzati nell'ambito delle valutazioni di rischio in aziende soggette a Direttiva Seveso (cfr. D.Lgs. n. 105/2015).

L'estensione e l'accuratezza delle statistiche legate alle esplosioni e agli infortuni ad esse collegate è variabile e dipende dall'entità dell'incidente stesso. Mentre infatti è poco probabile che incidenti quali quelli avvenuti in ThyssenKrupp o in Umbria Olii passino inosservati, può accadere che eventi verificatisi senza causare danni rilevanti o infortuni non siano correttamente annotati, come rappresentato qualitativamente in Figura 1.1.

Figura 1.1 - Indicazione qualitativa tra gli incidenti rilevabili e non rilevabili nelle statistiche

Pur a fronte di tali difficoltà, si riporta un riepilogo delle principali esplosioni industriali avvenute nel trentennio 1971-2001 in Europa e negli Stati Uniti (vedi Tabella 1.2).

Tabella 1.2 - Esempi illustrativi di esplosioni dovute a gas, vapori e polveri

Аппо	Luogo	Sostanze coinvolte	Імріанто	Morti (m) Feriti (f)
1972	Norvegia	Polvere di alluminio	Miscelatori	5m/2f
1974	Flixborough, UK	Cicloesano	Impianto di caprolattame	28m/104f
1975	Antwerp, Belgio	Etilene	Impianto di polietilene	6m/13f

(segue)

(segue da p. 3)

Anno	Luogo	Sostanze coinvolte	Імріанто	Morti (m) Feriti (f)
1975	Beek, Olanda	Propilene	Impianto petrolchimico	14m/-
1977	Galvesto, TX, USA	Polvere di cereali	Silos di cereali	15m/-
1977	Westego, Lousiana, USA	Polvere di cereali	Silos di cereali	36m/10f
1978	Texas City, TX, USA	LPG	Serbatoi di stoccaggio	7m/10f
1981	Corpus Christi, TX, USA	Polvere di cereali	Elevatori a tazze	9m/30f
1984	Romeoville, IL, USA	Propano	Colonne di assorbimento	15m/22f
1985	Priolo, Italia	HCs	Produzione etilene	1m/2f
1987	Grange-Mouth, UK	Idrogeno	Reattori di separazione	-/-
1988	Norco, LA, USA	C3HCs	Cracking catalitico	7m/28f
1988	Piper Alpha, Mare del Nord	Gas, petrolio	Piattaforma di estrazione	167m/-
1989	Antwerp, Belgio	Ossido di etilene	Colonne di distillazione	-/-
1989	Pasadena, TX, USA	Isobutano	Impianto di polietilene	23m/103f
1993	Monaco, Germania	Perossidi	Raffinazione di perossidi	2m/-
1997	Blaye, Francia	Polvere di cereali	Stoccaggio cereali	11m/-
2001	Tolosa, Francia	Ammoniaca, fertilizzanti, metanolo	Produzione fertilizzanti chimici	29m/2400f

Fonte: Abbasi et al., 2006; Pekalski et al., 2005

Esiste un primo aspetto importante che differenzia le esplosioni causate da gas e vapori infiammabili rispetto a quanto accade con le polveri combustibili. Infatti, se le esplosioni di gas e vapori avvengono prevalentemente come conseguenza del rilascio di tali sostanze non combuste nell'ambiente e nel loro successivo innesco, le esplosioni che coinvolgono le polveri combustibili hanno tipicamente origine dall'interno di un contenimento e, solo successivamente all'innesco, si propagano all'ambiente circostante (e alla parte rimanente dell'impianto). Pur se tali caratteristiche saranno approfondite in seguito, già fin d'ora si può quindi anticipare che le strategie di prevenzione e protezione contro il rischio di esplosione potranno differire a causa di questa prima, importante, constatazione.

Un secondo aspetto da sottolineare è collegato alla pericolosità *percepita* della sostanza infiammabile/combustibile. Mentre risulta evidente che sia i gas sia i vapori infiammabili hanno la potenzialità di causare un'esplosione, così non è per le polveri combustibili, la cui rischiosità esplosiva risulta spesso scarsamente considerata, soprattutto quando tali sostanze sono presenti ordinariamente negli ambienti di vita (es. zucchero, cereali, legno, ecc.).

Tra le più significative esplosioni industriali avvenute negli ultimi dieci anni nel nostro Paese si elencano le seguenti:

 anno 2006: Umbria Olii di Campello sul Clitunno (PG). Oleificio. Esplosione di serbatoi di stoccaggio olio che causa quattro morti;

- anno 2007: Molino Cordero a Fossano (CN). Mulino per cereali. Esplosione di silos di stoccaggio cereali che causa cinque morti;
- anno 2007: Acciaierie ThyssenKrupp a Torino. Produzione acciai speciali. Esplosione che avviene nel reparto trattamenti termici e che causa sette morti.

Questi accadimenti, pur essendo di assoluto rilievo sia per il carico di dolore che hanno causato sia per il loro risalto mediatico, non sono tuttavia realmente rappresentativi dell'insieme degli eventi incidentali causati da esplosioni nei luoghi di lavoro. A questo fine si riportano (Tabella 1.3) gli infortuni sul lavoro avvenuti nell'anno 2006 e indennizzati a tutto il 30/04/2008, analizzati dall'INAIL per *deviazione* e *agente materiale della deviazione*. Da tali dati emerge che gli infortuni attribuibili alla deviazione *elettricità*, *esplosione ed incendio* è causa di circa lo 0,4% degli infortuni nel settore industria e servizi.

Il fenomeno dell'esplosione manifesta, pertanto, una limitata frequenza di infortuni rispetto a tutte le altre ipotesi di incidente. Tuttavia, un'analisi approfondita sviluppata attraverso la banca dati interattiva dell'ISPESL-INAIL e basata su informazioni fornite dall'INAIL (anni 2000-2006) relative alle gestioni *Industria*, *Agricoltura* e *Conto Stato* (di cui si riporta un estratto in Allegato A) evidenzia che l'infortunio derivante da un evento esplosivo risulta statisticamente mortale una volta ogni (circa) 55 incidenti, secondo solo all'elettrocuzione (1 morto ogni 46 incidenti). Tale mortalità risulta molto più frequente della media complessiva degli infortuni, dato che risulta mortale, in media, un infortunio ogni (circa) 500.

L'esplosione è pertanto un evento infortunistico il quale, pur presentandosi con una limitata frequenza nei luoghi di lavoro, manifesta un'efficacia notevole nel determinare gravi lesioni ai lavoratori esposti.

Emerge inoltre che il settore delle *costruzioni di macchine* ed il settore delle *costruzioni e impianti* sono le attività INAIL del settore industria che espongono maggiormente i lavoratori al rischio infortunio derivante da un'esplosione.

1.2 LE ESPLOSIONI DELLE POLVERI COMBUSTIBILI

Nel settore delle esplosioni delle polveri combustibili, si rileva una discreta presenza di ricerche che hanno approfondito statisticamente il fenomeno (Stati Uniti, Germania e Gran Bretagna). Si ricorda, tuttavia, che questi studi riepilogano solo una piccola frazione di tutte le esplosioni dovute a polveri a causa, anche in questo caso, dell'assenza di un sistema centralizzato di raccolta ed analisi dei dati. In conseguenza di ciò gli indici di seguito riportati non potranno essere utilizzati per conclusioni generalizzate. Si presenta in Tabella 1.4 un riepilogo e confronto tra le principali statistiche dei materiali in polvere coinvolti nelle esplosioni.

La lettura complessiva fa emergere una situazione di particolare pericolosità nei settori del legno/carta ed alimentare. Il settore dei metalli (leghe leggere in particolare) risulta comunque presente con un discreto numero di eventi incidentali mentre l'ambito farmaceutico, pur possedendo un rischio potenziale significativo, palesa una ridotta presenza di accadimenti. Tale limitazione del fenomeno è dovuta alla presenza di misure di controllo tecnico ed organizzativo maggiormente sviluppate rispetto ad altre filiere di produzione.

Tabella 1.3 - Infortuni sul lavoro avvenuti nell'anno 2006 e indennizzati a tutto il 30 aprile 2008 per deviazione/agente materiale della deviazione. Settore industria e servizi

					Deviazione				
Agente materiale della deviazione	DA ELETTRICITÀ, ESPLOSIONE, INCENDIO	DA FUORIUSCITA	D a коттика	DA PERDITA DI CONTROLLO	DA CADUTA DI PERSONA	DA MOVIMENTI	DA SORPRESA, VIOLENZA	Non CODIFICATO Non DETERMINATO	TOTALE
Strutture edili e superfici	526	1423	10032	8812	79868	33712	494	1126	135993
Dispositivi di distribuzione	69	175	1250	1926	314	1544	2	88	5368
Motori	303	110	882	1658	229	1277	3	36	4498
Utensili	209	773	5156	32201	1096	9688	120	909	49848
Macchine e attrezzature	125	275	1282	5110	1056	4043	33	157	12081
Dispositivi di convogliamento	92	217	3636	10176	2682	2486	152	214	27046
Veicoli terrestri	58	102	1935	75523	8753	10512	1895	612	99390
Altri veicoli	14	16	126	299	746	618	35	47	2269
Materiali	331	5300	22830	29203	3335	31806	235	968	93936
Sostanze	120	3815	225	296	346	264	24	66	5189
Attrezzature particolari	91	92	2372	2894	1309	5804	111	114	12787
Organismi viventi	20	77	732	1109	821	6971	6239	149	16618
Rifiuti	4	101	169	242	103	476	9	56	1127
Fenomeni fisici	190	124	99	131	245	130	24	99	976
Non codificato Non determinato	385	1112	5203	19270	10520	41148	2957	19907	100502
Totale	2537	13712	55896	189218	111423	157870	12830	24142	567628
% sul totale	0,4	2,4	8,6	23,3	19,6	27,8	2,3	4,3	100

Fonte: Rapporto Annuale INAIL, 2007

Tabella 1.4 - Materiali coinvolti nelle esplosioni di polveri

Materiali	USA (1985 (FM GLo		UK (1979- (HSE	,	GERMANIA (190 (BECK, 19	
IWAIERIALI	Numero di incidenti	%	Numero di incidenti	%	Numero di incidenti	%
Legno/Carta	56	37	69	23	120	34
Carbone	27	18	24	8	33	9
Metalli	19	13	55	18	47	13
Plastica	8	5	10	3	46	13
Alimentare	ND*	ND*	94	31	88	25
Farmaceutici	ND*	ND*	27	9	ND*	ND*
Altro/sconosciuto	4	27	24	8	23	6
Totale	150	100	303	100	357	100

*ND: Non disponibile Fonte: AICHE, 2005

D'altra parte, gli impianti di processo più frequentemente coinvolti in incidenti sono quelli indicati in Tabella 1.5. Le statistiche evidenziano che sia negli Stati Uniti che in Gran Bretagna le tipologie impiantistiche maggiormente soggette al rischio di esplosione sono rappresentate dai *sistemi di deposito e separazione* (filtri, elettrofiltri, cicloni, ecc.). Tale dato è spiegabile per almeno tre ragioni:

- 1. i sistemi di separazione sono diffusi in tutti settori industriali;
- 2. in essi si concentrano buona parte delle polveri sottili del processo. Polveri sottili che, possedendo basse energie di accensione, risultano facilmente incendiabili;
- 3. le forme geometriche tipiche nonché gli spessori ed i materiali con i quali sono realizzati costituiscono la parte dell'impianto più debole strutturalmente.

Tuttavia, mentre in USA sono i sistemi di separazione delle polveri gli impianti in cui si concentrano la maggioranza degli eventi, in Gran Bretagna la situazione si presenta più sfumata con una distribuzione statistica delle esplosioni uniforme (ad eccezione del caso relativo ai *Dust Mixer*). In Germania le statistiche riportano una situazione molto simile a quella inglese, con una prevalenza di esplosioni avvenute in silos e bunker. A questo si aggiunga che studi specifici condotti dall'NFPA sull'industria molitoria hanno individuato nell'elevatore a tazze il componente dell'impianto a maggior rischio di esplosione primaria.

Tabella 1.5 - Apparecchi coinvolti nelle esplosioni di polveri

Apparecchi	USA (1985 (FM GLO		UK (1979-1 (HSE)		GERMANIA (196 (BECK, 19	
APPARECCHI	Numero di incidenti	%	Numero di incidenti	%	Numero di incidenti	%
Sistemi di deposito e separazione delle polveri	156	42	55	18	73	17
Mulini	35	9	51	17	56	13
Silos e bunker	27	7	19	6	86	20
Sistemi di trasporto	32	9	33	11	43	10
Essiccatoi	22	6	43	14	34	8
Miscelatori	> 12	> 3	7	2	20	5

(segue)

(segue da p. 7)

Apparecchi	USA (1985 (FM GLO		UK (1979-1 (HSE)	988)	GERMANIA (196 (BECK, 19	
APPARECCHI	Numero Di incidenti	%	Numero di incidenti	%	Numero di incidenti	%
Altro/sconosciuto	84	23	95	31	114	27
Totale	372	100	303	100	426	100

Fonte: AICHE, 2005

In generale, un'esplosione primaria (e le relative esplosioni secondarie) causano con molta frequenza un successivo incendio che coinvolge la frazione significativa delle polveri che non hanno preso parte all'esplosione stessa. Questo fenomeno è presente in circa il 70% del totale dei casi di esplosione (Thornberg, 2001) ed avviene con maggiore frequenza nei processi con presenza di polveri organiche.

Concentriamo ora l'attenzione sul rischio infortunistico derivante dall'esplosione delle polveri. Le aziende maggiormente esposte da questo punto di vista risultano quelle appartenenti alla *filiera alimentare* nella quale si verificano circa il 32% dei decessi complessivi (Tabella 1.6), mentre più uniforme risulta la distribuzione dei feriti nei vari ambiti industriali (ad eccezione dell'industria del carbone e carta, che possiede presenze limitate di entrambi i fenomeni).

Tabella 1.6 - Esplosioni da polvere nella Repubblica Federale Tedesca tra il 1965 ed il 1980

TIPO	Esplosioni	Mo	DRTI	FE	RITI
DI ATTIVITÀ	(%)	%	PER ESPLOSIONE	%	PER ESPLOSIONE
Legno	31,6	11,7	0,11	25,0	1,10
Alimentare	24,7	36,8	0,43	26,0	1,44
Metalli	13,2	17,5	0,38	18,5	1,94
Plastica	12,9	17,5	0,39	20,0	2,13
Carbone	9,2	6,8	0,21	8,0	1,18
Carta	2,0	0,0	0,0	0,0	0,0
Altro	6,4	9,7	0,43	2,5	0,56

Fonte: Beck, 1982

Spostandoci ora agli eventi incidentali rapportati alla singola esplosione, emerge anche in questo caso l'elevata letalità delle esplosioni che avvengono nel settore alimentare, probabilmente a causa della violenza intrinseca del fenomeno in questo ambito. Si rileva, tuttavia, che il maggior numero di feriti per esplosione avviene nel settore della plastica e dei metalli.

Un ultimo particolare che riteniamo importante sottolineare è relativo alle sorgenti di accensione che con più frequenza innescano le ATEX dovute a polveri combustibili (Tabella 1.7). Si rileva la preponderanza delle *scintille meccaniche* nei casi dell'industria del legno, alimentare e metalli. Il *caricamento elettrostatico* contribuisce con una certa significatività alle esplosioni nel settore della plastica, mentre il carbone trova causa di innesco frequente nelle *combustioni senza fiamma*.

Tabella 1.7 - Esplosioni da polveri nella Repubblica Federale Tedesca (1965-1985). Relazione tra le sorgenti di ignizione e tipologie industriali

TIPO DI FONTI DI ACCENSIONE	ESPLOSIONI TOTALI (%)	Legno (%)	CARBONE (%)	ALIMENTARE (%)	PLASTICA (%)	Metalli (%)
Scintille meccaniche	26,2	26,6	5,1	22,8	21,2	56,1
Combustione senza fiamma	11,3	19,5	20,5	5,7	9,6	0,0
Attrito meccanico	9,0	9,4	5,1	12,4	9,6	3,5
Scariche elettrostatiche	8,7	2,3	0,0	6,7	34,6	5,3
Incendio	7,8	14,8	12,8	4,8	2,0	2,0
Autocombustione	4,9	3,1	15,4	6,7	2,0	3,5
Superfici calde	4,9	5,5	10,3	2,8	3,9	3,5
Lavori a fuoco	4,9	2,3	2,6	12,4	2,0	2,0
Macchinari elettrici	2,8	0,0	2,6	5,7	2,0	0,0
Sconosciuto	16,0	16,5*	25,6*	20,0*	13,1*	24,1*
Altro	3,5	-	-	-	-	-

* Include "Altro"

Fonte: Jeske et al., 1989

1.3 LE ESPLOSIONI DI GAS, VAPORI E NEBBIE INFIAMMABILI

Varie possono essere le sorgenti di accensione che determinano un'esplosione di gas e vapori infiammabili ma, anche in questo caso, i dati e la distribuzione delle sorgenti di innesco risultano studiate parzialmente. Un approfondimento che ha cercato di dettagliare le cause e gli effetti delle esplosioni è stato condotto dall'HSE⁴ britannico attraverso uno studio prospettico che ha coperto un anno di incidenti avvenuti in Gran Bretagna nel periodo compreso tra l'aprile 1987 e il marzo 1988. Una prima serie di dati riepiloga gli eventi incidentali che hanno avuto origine all'interno degli impianti di processo (Tabella 1.8). Preliminarmente osserviamo che in tali impianti si rileva una presenza maggioritaria di eventi innescati da cause di cui non è stato possibile accertarne la natura. Un aspetto sicuramente degno di rilevanza è comunque rappresentato dal fatto che il totale degli infortuni è attribuibile a inneschi legati a *fiamme/lavori a fuoco* o *superfici calde*. Queste sorgenti di accensione risultano frequentemente attribuibili a lavori di manutenzione. Un deciso incremento degli infortuni si verifica nel caso di impianti ed attività con superfici aperte (Tabella 1.9).

Nel passaggio da operazioni su impianti chiusi a quelle ad impianti aperti si rileva un incremento del 60% degli incidenti (da 86 a 139 eventi). Tale aspetto è probabilmente attribuibile sia alla contemporaneità tra lo sviluppo dell'esplosione e la presenza nelle vicinanze del lavoratore (dovuta prevalentemente ad esigenze di processo e/o lavorazione) sia alla maggiore probabilità che, con impianti aperti, le ATEX contenute possano venire più facilmente in contatto con le sorgenti di accensione. Gli infortuni che avvengono con superfici aperte possiedono inoltre altre cause di innesco ulteriori oltre a quelle tipiche della manutenzione; l'elettricità, in questo senso, determina un totale di 29 incidenti con 4 infortuni significativi mentre l'assenza di divieto di fumo è alla base, complessivamente, di 17 incidenti con 8 infortuni.

⁴ HSE è l'acronimo di Health ad Safety Executive.

Tabella 1.8 - Indagine su incendi ed esplosioni. Incidenti in impianti chiusi

SORGENTI DI ACCENSIONE	IMPIANTI	REATTORI	RECIPIENTI A PRESSIONE	Serbatol	SCAMBIATORI DI CALORE	Vaporizzatori	Pompe	Piping	TUBAZIONI FLESSIBILI	Тотаге
Fiamme/Lavori a fuoco	3 (2)		1 (1)	1 (1)		2		3		10 (4)
Superfici calde	1	1	1	1 (1)	1		1 (1)	3	1	10 (2)
Attrito meccanico	3						1			4
Elettricità							5	3		8
Particelle calde	1			1			1			3
Scariche elettrostatiche	1	2	2	1						6
Fumare										0
Auto-combustione	1	1	1		2		1	1		7
Sconosciuto	9	4 (1)	5	3	1		4 (1)	7	5	38
Totale	19 (2)	8 (1)	10 (1)	7 (2)	4	2	13 (2)	17	6	86 (8)

N.B. Tra parentesi si riporta il numero di incidenti che hanno causato infortuni

Fonte: Cox et al., 1990

Tabella 1.9 - Indagine su incendi ed esplosioni. Incidenti in impianti ed attività con superfici aperte

SORGENTI DI ACCENSIONE	FORNO DI EVAPORAZIONE SOLVENTI	CABINE DI VERNICIATURA	Piccoli	OPERAZIONI DI SGRASSAGGIO	Serbatoi Mobili	ALTRO	Тотасе
Fiamme/Lavori a fuoco	2 (1)	1	10 (6)	4 (2)	4 (3)	8 (2)	29 (14)
Superfici calde		2 (1)	2	3	6 (5)	7 (1)	20 (7)
Attrito meccanico		4 (1)		1		6 (1)	11 (2)
Elettricità	2	2	4	1	11 (4)	9	29 (4)
Particelle calde							0
Scariche elettrostatiche		2	3	1		4	10
Fumare		1	5 (4)	3 (2)	3 (1)	5 (1)	17 (8)
Auto-combustione				1		1	2
Sconosciuto		3	7 (2)	1	9 (4)	1	21 (6)
Totale	4	15	31	15	33	41	139 (41)

N.B. Tra parentesi si riporta il numero di incidenti che hanno causato infortuni

Fonte: Cox et al., 1990

Estratto

Estratto da un prodotto in vendita su **ShopWKI**, il negozio online di Wolters Kluwer Italia

Vai alla scheda \rightarrow

Wolters Kluwer opera nel mercato dell'editoria professionale, del software, della formazione e dei servizi con i marchi: IPSOA, CEDAM, Altalex, UTET Giuridica, il fisco.

